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Euroleon coreanus (Okamoto) is widely distributed in China, and the larval
stage can be treated as traditional Chinese medicine. However, the host-
bacterium relationship remains unexplored, as there is a lack of knowledge
on the microbial community of ant lions. Hence, in the current study, we
explored the microbial community of the larval ant lion E. coreanus using
Illumina MiSeq sequencing. Results indicated that a total of 10 phyla, 126
genera, and 145 species were characterized from the second instars of
E. coreanus, and most of the microbes were classified in the phylum
Proteobacteria. Cronobacter muytjensii was the most abundant species
characterized in the whole body and gut of E. coreanus, and the unclassi-
fied species in the genera Brevundimonas and Lactobacilluswere relatively
more abundant in the head and carcass. In addition, no Wolbachia-like
bacteria were detected, whereas bacteria like Francisella tularensis subsp.
Holarctica OSU18 and unclassified Rickettsiella were first identified in ant
lion E. coreanus.

Introduction

Ant lions are the semisedentary larval form ofMyrmeleontidae,
which represent the largest family of the order Neuroptera,
with about 2000 species distributed throughout the world
(Devetak et al 2010). Most of them are generalist predators
that capture small passing arthropods by digging conical pits
in sandy soil (Scharf et al 2009). The pit-trapping foraging strat-
egy of the ant lion has received enormous research interests
(Heinrich & Heinrich 1984, Devetak et al 2005, Beponis et al
2014), and their taxonomy (Wan & Wang 2003, Bao & Wang
2006), biology (Kitching 1984, Devetak et al 2013), and ecology
(Scharf et al 2008, Rotkopf et al 2012) have also been exten-
sively investigated.

The great pharmaceutical value of ant lions has been widely
recognized in China. The earliest record of ant lion as traditional
Chinese medicine formally appeared in the Compendium of
Materia Medica (Ben Cao Gang Mu) of the Ming dynasty (AD

1590), and theywere used to treat a variety of incurable diseases,
including urinary tract stones, vasculitis, hypertension, otitis me-
dia, thrombosis, and other chronic diseases (Li et al 2013).
Recently, two isoindoline alkaloids with potential pharmacologi-
cal activities were characterized from the crude drug species of
Myrmeleontidae ant lions (Nakatani et al 2006), and some vol-
atile secretions, such as nerol, nostrenol, and 10-homonerol,
have also been isolated from other ant lions (Baeckström et al
1989, Bergström et al 1992). Additionally, a paralytic polypeptide
named ALBT-toxin was purified from the live ant lions
Myrmeleon bore (Tjeder), and this toxin was proved to be pro-
duced by the bacterial isolates cultured from them (Matsuda
et al 1995, Toshida et al 1999, Nishiwaki et al 2004). This raised
an interesting argument that some of the pharmaceutical com-
pounds may derive from the primary or secondary metabolites
of the microbiota harbored by these ant lions. However, the
host-bacterium relationship remains unexplored, as there is a
lack of knowledge on ant lion-associated bacterial communities.
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Dunn & Stabb (2005) performed culture-independent 16S
rRNA gene sequence analysis of the bacteria associated with
tissues of an ant lion,Myrmeleonmobilis (Hagen), and revealed
that the main microbial species belongs to α-Proteobacteria
with similarity to Wolbachia spp., and γ-Proteobacteria with
similarity to the family Enterobacteriaceae. They also indicated
the microbial community variation between ant lion species
(Dunn & Stabb 2005). Hence, in the current study, we focused
on the ant lion Euroleon coreanus (Okamoto), which is widely
distributed in Korea, Mongolia, and North China, to explore its
microbial community through Illumina MiSeq sequencing.

Material and Methods

Sample collection and tissue dissection

Ant lions were collected from the Xiaowutai National Natural
Reserve Area (39°50′-40°07′N, 114°47′-115°30′E) of Hebei
Province, North China. Representative adults were identified
as E. coreanus according to the key described by Bao & Wang
(2006). The second instar larvaewith 0.5–0.7 cm in lengthwere
selected for genomic DNA isolation or tissue dissection. The ant
lion samples were surface sterilized by immersion in absolute
ethanol for 10min, rinsed in sterile 1× phosphate-buffered saline
(PBS) (260 mM NaCl, 10 mM Na2HPO4, 10 mM NaH2PO4, pH
7.2) for 5 min, followed by a second immersion in absolute
ethanol for 5 min. Subsequently, the whole gut was isolated
by a ventral incision and removal using forceps; head tissues
were isolated by removing the head from the body using a
scalpel blade. Body tissue was defined as the remaining tissue
after gut and head removal. The whole ant lions (three ant
lions) and the dissected tissues (from three ant lions) were
immediately snap-frozen in liquid nitrogen and further used.

Genomic DNA extraction, PCR amplification, and amplicon
quantification

The genomic DNA was purified using the DNeasy Tissue Kit
(Qiagen, Germany), according to the manufacturer’s instruc-
tions. The extracted genomic DNA was measured with
Nanodrop (Thermo Fisher Scientific, US) and electropho-
resed in 1% (w/v) agarose gel. The V4–V5 region of the bac-
teria 16S ribosomal RNA gene was amplified by PCR (95°C for
2 min, followed by 25 cycles at 95°C for 30 s, 55°C for 30 s,
and 72°C for 30 s and a final extension at 72°C for 5 min)
using primers 515F (5′-barcode-GTGCCAGCMGCCGCGG-3′)
and 907R (5′-CCGTCAATTCMTTTR AGTTT-3′), where barcode
is an eight-base sequence unique to each sample (Zhou et al
2011). PCR reactions were performed in triplicate 20 μL mix-
ture containing 4 μL of 5× FastPfu buffer, 2 μL of 2.5 mM
dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu
Polymerase, and 10 ng of template DNA. Amplicons were

extracted from 2% agarose gels and purified using the
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, USA),
according to the manufacturer’s instructions and quantified
using QuantiFluor™-ST (Promega, USA).

MiSeq library construction and sequencing

Purified amplicons were pooled in equimolar and paired-end
sequenced (2 ×250) on an IlluminaMiSeq platform according
to the standard protocols. The raw reads were deposited into
the NCBI Sequence Read Archive (SRA) database (Accession
Number: SRP051666).

Raw fastq files were demultiplexed and quality-filtered
using QIIME (version 1.17) with the following criteria: (i)
250-bp reads were truncated at any site receiving an average
quality score <20 over a 10-bp sliding window, discarding the
truncated reads that were shorter than 50 bp; (ii) exact
barcode matching, two nucleotide mismatches in primer
matching, and reads containing ambiguous characters were
removed; and (iii) only sequences that overlap longer than
10 bp were assembled according to their overlap sequence.
Reads that could not be assembled were discarded.

Operational taxonomic units (OTUs) were clustered with
97% similarity cutoff using UPARSE (version 7.1 http://drive5.
com/uparse/), and chimeric sequences were identified and
removed using UCHIME (version 4.2.40 http://drive5.com/
usearch/manual/uchimealgo.heml). The phylogenetic
affiliation of each 16S rRNA gene sequence was analyzed by
RDP Classifier (http://rdp.cme.msu.edu/) against the Silva
(SSU115) 16S rRNA database using a confidence threshold of
70% (Amato et al 2013). Samples were first clustered according
to beta-diversity matrices, followed by unweighted pair group
method with arithmetic mean (UPGMA) clustering based on
the UniFrac distancematrix, and heatmapwas generated using
a hierarchical clustering algorithm (Jiang et al 2013).

Results

A total of 74,918 valid sequences, 72,880 trimmed reads, and
363 OTUs were obtained from the four samples through
Illumina MiSeq sequencing (Online Supplementary
Material—Table S1). Among them, 11,524 reads clustered in
49 OTUs from the whole body of E. coreanus (Ec_all), and 28,
112 reads clustered in 123 OTUs and 20,422 reads in 97 OTUs
were produced from the gut (Ec_gut) and head (Ec_head) of
the ant lion, respectively. After removing the gut and head,
the carcass (Ec_other) of the ant lion yielded the remaining
12,822 reads which were classified into 94 OTUs (Table 1).

The rarefaction curves showed that all samples sequenc-
ings, except the whole body, have approached the saturation
plateau (Online Supplementary Material—Fig S1), which indi-
cated that the sequencing depth of these samples
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represented the microbial communities very well. By analyz-
ing the Shannon-Wiener index (Wang et al 2012), the curves
tended to level off (Online Supplementary Material—Fig S2).
The number of OTUs was obtained at 3% dissimilarity, and
out of the 363 OTUs, a total of 160 OTUs were detected
unique in all the four samples (Fig 1).

Taxonomic abundance of the obtained sequences was
summarized at the phylum, genus, and species levels. At
the phylum level, a total of 10 phyla were identified from
all the four samples. Among these identified microbes,
Proteobacteria were the most abundant in the whole body
(97.0%), gut (68.6%), head (64.3%), and the carcass (68.2%)
(Fig 2a). Firmicutes was also abundant in the gut (19.3%),
head (32.5%), and the carcass (28.7%), but relatively low in
the whole body (0.3%). Deinococcus-Thermus was obviously
high in the gut (8.9%), whereas low in the other samples.
There was no obvious difference in the distribution of
Actinobacteria in the gut (2.7%), head (2.3%), and the carcass
(2.1%), whereas it was relatively low in the whole body
(0.6%). Acidobacteria was not detected in the gut, whereas
Fusobacteria and Spirochaetae were only detected in the
gut. Tenericutes was exclusively associated with the carcass
of E. coreanus (Fig 2a).

Microbes from all four samples were assigned into 126
genera (Online Supplementary Material—Table S2). The gut
of the ant lion harbored the most diversity of microbes, and

the most abundant microbes characterized in the whole
body were Cronobacter, which were widely distributed in
all tissues of E. coreanus ant lion. Brevundimonas,
Lactobacillus, and Alcaligenes were widely distributed in
the head and carcass, and a large amount of Lactococcus
was identified in the gut and head, whereas unclassified
Enterobacteriaceae was harbored in the gut (Fig 2b).

To further explore the diversity of microbes associated
with the ant lion E. coreanus, the relative abundance of the
characterized microbial species were summarized (Online
Supplementary Material—Table S3). Cronobacter muytjensii
was the most abundant species characterized in the whole
body and gut of E. coreanus, followed by unclassified species
of Pantoea and Acinetobacter calcoaceticus in the whole
body, and Thermus scotoductus and unclassif ied
Lactobacillus in the gut. In the head and carcass of the ant
lion, unclassified species in the genera Brevundimonas and
Lactobacillus were relatively more abundant, followed by
Alcaligenes faecalis and unclassified Lactococcus in the head,
and C. muytjensii and unclassified Rickettsiella in the carcass
(Table 2). It is worth to note that Francisella tularensis subsp.
Holarctica OSU18 was first identified from the ant lion
E. coreanus.

According to hierarchical clustering analysis, differences of
the microbial composition among all tested samples were
calculated using unweighted pair group method with
arithmetric mean. Results indicated that the microbial com-
munity in the head of the ant lion was similar with that
characterized in the carcass, whereas the microbes identified
from the gut were more similar with that from the whole
body of E. coreanus ant lion (Fig 3). Out of the 126 identified
genera, the top 100 genera were clustered according to the
similarity detected between tested samples (Fig 3). Most of
the characterized microbes were harbored in the gut.

Discussion

Data on the microbial community of ant lion larvae are rare,
and the only study on the characterization of the microbes in
the ant lionM. mobilis (Hagen) indicated that the microbiota
was qualitatively similar throughout the three larval stages,
but that the microbial communities may vary between ant

Table 1 Statistics of sample
sequences obtained from the ant
lion Euroleon coreanus.

Sample Reads Label: 0.97

OTU Ace Chao Shannon Simpson

Ec_all 11,524 49 83 (63,133) 75 (58,122) 0.47 (0.45, 0.5) 0.8423 (0.8333, 0.8514)

Ec_gut 28,112 123 125 (123,131) 124 (123,132) 2.5 (2.48, 2.52) 0.1574 (0.1546, 0.1602)

Ec_head 20,422 97 108 (101,125) 106 (100,126) 1.98 (1.96, 2) 0.2464 (0.2417, 0.2511)

Ec_other 12,822 94 95 (94,101) 95 (94,102) 2.48 (2.46, 2.51) 0.1436 (0.1404, 0.1468)

Fig 1 The different distribution of the unique OTUs clustered in all the
four tested samples of ant lion Euroleon coreanus.
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lion species or between different geographic populations
(Dunn & Stabb 2005).

We demonstrated a total of 10 phyla, 126 genera, and 145
species were characterized from the second instars of the ant
lion E. coreanus, and most of the microbes belonged to
Proteobacteria, followed by Deinococcus-Thermus,
Firmicutes, and Actinobacteria. When compared to the micro-
biota from M. mobilis, which was dominated by α- and γ-
Proteobacteria bacteria (Dunn & Stabb 2005), a slightly more
diverse microbial community, including the β-Proteobacteria,
Deinococci, Bacilli, and Actinobacteria, was characterized from
E. coreanus. However, no Wolbachia-like bacteria were de-
tected from E. coreanus, as observed in ant lion larvae from
Japan (Egami et al 2009), which indicated thatWolbachia are
not commonly associated with ant lions in Asia. Although
Wolbachia are ubiquitously found in diverse insects and also
regarded as essential for host’s growth and reproduction
(Nikoh et al 2014), the association between Wolbachia and
ant lions remains unknown (Dunn & Stabb 2005). In addition,
some bacteria like F. tularensis subsp. Holarctica OSU18 and
unclassified Rickettsiella were first identified in the ant lion
E. coreanus.

The morphology and functions of the discontinuous gut in
ant lions have attracted a great interest from researchers
(Van Zyl et al 1997, Lipovšek et al 2012), whereas the micro-
bial community harbored in the gut was presumed to be
relatively simple (Dunn & Stabb 2005). However, in the cur-
rent study, the gut of E. coreanus was proved to contain
more diversity of microbes than the head and the carcass
(Fig 2), with the γ-Proteobacteria C. muytjensii (formerly
called Enterobacter sakazakii), as the most abundant

symbiont. Cronobacter spp. have been isolated externally
or internally (mostly in intestinal tracts) from several species
of flies, such as the Mexican fruit fly Anastrepha ludens
(Loew) and the stable fly Stomoxys calcitrans (Linnaeus)
(Pava-Ripoll et al 2012). Previous studies indicated that in
the gut of M. mobilis (Dunn & Stabb 2005) and M. bore
(Nishiwaki et al 2004), Enterobacter aerogenes and Bacillus
cereus were the most common bacterial associates, respec-
tively, and these bacteria were regarded as the source of
insecticidal or bactericidal peptides. Enterobacter aerogenes
and B. cereus were not found in the ant lion E. coreanus, but
an unclassified Pantoea species was characterized in ant lion
E. coreanus, which has been found to protect the host from
colonization by other microorganisms by producing antimi-
crobial compounds (Dillon & Charnley 1995).

The microbiota may also differ from tissue to tissue, as we
demonstrated by the differences in the microbiota associated
with the head, gut, and carcass of the ant lion E. coreanus
(Fig 3). A relatively low amount of C. muytjensii was charac-
terized from the head of E. coreanus, a tissuemostly colonized
by an unclassified Brevundimonas species. Brevundimonas
have been characterized from many other insects, including
the heads of sharpshooters (Gai et al 2011) and gut of soybean
aphid (Bansal et al 2014) and other insects (Hu et al 2014,
Merville et al 2013), whereas its function remains to be ex-
plored. Lactococcus and Lactobacillus bacteria are frequently
found in animal guts, and they usually help the host to pro-
duce amino acids and vitamins that they do not synthesize
themselves (Reeson et al 2003). In the current study, the
relatively high abundances of Lactococcus and Lactobacillus
in the gut and head of E. coreanus may be associated with

Fig 2 Relative abundance of the characterized microbes at phylum and genus level per sample of ant lion Euroleon coreanus (A Phylum level. B Genus
level).
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its special feeding behavior and gut physiology. Further stud-
ies are now required to clarify the interactions between the

colonized bacteria, the ant lion host, and the great pharma-
ceutical potential of the ant lion.

Fig 3 Heatmap analysis on the top 100 genera of the microbes identified in the ant lion Euroleon coreanus.
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