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We report that multiple symbionts coexist in Dermacentor silvarum. Based on 16S rRNA gene sequence analyses, we prove that
Coxiella-like and Arsenophonus-like symbionts, with 95.6% and 96.7% sequence similarity to symbionts in the closest taxon,
respectively, are novel. Moreover, we also provide evidence that the Coxiella-like symbiont appears to be the primary symbiont.

Symbionts are ubiquitous in a diverse group of insect hosts.
They confer crucial and diverse benefits to their hosts, affect-
ing development (1), nutrition (2), reproduction and speciation
(3), defense against natural enemies and environment stress (4, 5),
and immunity (6). Symbionts usually are classified as obligate (or
primary) symbionts and facultative (or secondary) symbionts ac-
cording to the extent of the mutual dependence between the host
and the symbiont (7). Primary symbionts, restricted to specialized
tissues or cells, usually are obligate and essential for the survival of
the host and their own vertical transmission. Secondary symbi-
onts, not restricted to specific tissues, usually are facultative and
unessential for the host and transmitted either vertically or hori-
zontally between the same or different species (8, 9, 10). Many
insect species are usually simultaneously infected by multiple
symbionts, including one primary symbiont and various second-
ary symbionts (11), or two obligate mutual symbionts (12). In
general, various symbionts coexist in the same host, interact with
each other, and coregulate the biological processes of the host.

Like most insects, ticks exhibit close relationships with symbi-
onts. To date, a wide range of symbionts, such as Coxiella-like
(13), Francisella-like (14), Wolbachia-like (15), Rickettsia-like
(16), Arsenophonus-like (17), “Candidatus Midichloria mitochon-
drii” (18), and Rickettsia peacockii (19) symbionts, have been de-
tected in several tick species. However, little attention has been
given to coinfection with multiple symbionts of ticks. Hence, we
focused the present study on coinfection of the multiple symbi-
onts in tick hosts. The new knowledge gained from this study
could be meaningful for a deep understanding of the biology and
ecology of ticks.

We first report that three symbionts, namely, Coxiella-like,

Arsenophonus-like, and Rickettsia-like symbionts, coexist in Der-
macentor silvarum. Interestingly, Coxiella-like and Arsenophonus-
like symbionts are different from those in the taxon described
previously, with 95.6% and 96.7% similarity to the closest taxon,
respectively. Moreover, the Coxiella-like symbiont appears to be
the primary symbiont of D. silvarum.

D. silvarum samples were collected in Xiaowutai National Nat-
ural Reserve Area in China by flag dragging. Several collected ticks
were stored under —80°C conditions. Others were reared on rab-
bits as described by Liu et al. (20). Before DNA extraction, all tick
samples were sterilized as described by Clay et al. (21) and dis-
sected tissue samples were washed three times in sterile phos-
phate-buffered saline (PBS) (137 mM NacCl, 2.7 mM KCl, 4.3 mM
Na,HPO,-7H,0, 1.4 mM KH,PO,, pH 7.4). All DNA samples,
including the genomic DNA from a group of adults (10 females
and 10 males, respectively), from every individual field-collected
adult, and from a group of ticks at different developmental stages
(500 eggs, 200 larvae, and 50 nymphs) and from different tissues
(ovaries, salivary glands, Malpighian tubes, and midguts), were
extracted using a DNeasy tissue kit (Qiagen, Germany) according
to the protocol of the manufacturer. The eubacterial 16S rRNA
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TABLE 1 Oligonucleotide primers used for PCR amplification and sequencing

Target Annealing Approx product
Primer name Species gene Nucleotide sequence (5'-3") temp (°C) size (bp) Source or reference
CLS-Ds110F CLS-Ds 16S rRNA CACGTAGGAATCTACCTTGTAG 55 90 This study
CLS-Ds170R CGTTTTGTTCCGAAGAAATTAT
ALS-Ds82F ALS-Ds 16S rRNA AGGGAGCTTGCTTCCTGGCCGG 59 130 This study
ALS-Ds198R CGAAGGTGTGAGGCCTAATGG
Rickettsia354F Rickettsia 16S rRNA CAGCAATACCGAGTGAGTGATGAAG 56 350 23
Rickettsia647R AGCGTCAGTTGTAGCCCAGATG
RpCS.877p Rickettsia gltA GGGGACCTGCTCACGGCGG 46 380 24
RpCS.1258n CATAACCAGTGTAAAGCTG
Rr190.70p Rickettsia rompA GGTGGTCAGGCTCTGAAGCTAAC 48 530 25
Rr190.602n TGCAGTTTGATAACCGACAGTCTC
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FIG 1 Phylogenetic tree of three symbionts (CLS-Ds, ALS-Ds, and RLS-Ds) of D. silvarum and related tick-associated symbionts based on 16S rRNA gene
sequence similarity. The tree was rooted with Bacillus subtilis (X60646) and constructed using the neighbor-joining method, and clustering nodes were also
recovered using the maximum-likelihood method. Numbers at nodes represent the levels of bootstrap support (percent) based on neighbor-joining analysis of
1,000 replicated data sets. GenBank accession numbers are given in parentheses. The bar represents 5% sequence divergence. a-proteobacteria, alphaproteo-

bacteria; 'y-proteobacteria, gammaproteobacteria.

gene library was constructed by amplifying an approximately
1,500-bp fragment of the 16S rRNA gene using eubacterial uni-
versal primers 27F and 1492R (22). The eubacterial 16S rRNA
gene libraries were analyzed by restriction fragment length poly-
morphism (RFLP) using both Haelll and Rsal restriction endo-
nucleases.

To assess the prevalences, vertical transmission characteristics,
and infection sites of three putative symbionts, diagnostic PCR
assays were performed with three sets of primers specific for each
of them (Table 1). The PCR mixtures contained 20 mM Tris-HCI
(pH 8.4), 50 mM KCl, 1.5 mM MgCl,, 200 uM (each) deoxy-
nucleoside triphosphates (ANTP), 2.5 U Platinum Tag DNA poly-
merase (Invitrogen), and 0.5 mM (each) primer. The PCR cycling
conditions were as follows: 1 cycle of 94°C for 2 min; 30 cycles of
94°C for 305, 55°C for 30 s, and 72°C for 15 s; and, finally, 72°C for
10 min. Products were cloned into the plasmid pCR2.1-TOPO
(Invitrogen) and sequenced by the Sangon Biotech Company
(China).

The results of RFLP analyses revealed diverse microbial associ-
ations (Fig. 1). We found that the sequences of Dc-9 and Dc-54
from the female gene library and of Dx-6 and Dx-11 from the male
gene library were closely related to those of Arsenophonus-like
symbionts (ALSs) of D. variabilis (GenBank accession no.
AY265342) (26), with 98% to 98.15% similarity, and those sym-
bionts were designated ALS-Ds; the sequences of Dc-8 and Dc-71
from the female gene library and of Dx-56 and Dx-68 from the
male gene library shared 94.1% to 94.3% similarity with those of
the Coxiella-like symbiont of Haemaphysalis longicornis (Gen-
Bank accession no. AB001519) (27), and those symbionts were
designated CLS-Ds; and the sequences of Dc-3 and Dc-24 from
the female gene library and Dx-7 and Dx-21 from the male gene
library of symbionts designated RLS-Ds shared the highest se-

April 2013 Volume 79 Number 7

quence similarity with sequences of the Rickettsia symbiont
(99.8%), which had been detected in many Dermacentor species (23,
28). Further studies showed that the sequences obtained had
the highest (99.1% and 99.8%, respectively) similarity with
those of the gltA gene (GenBank accession no. DQ365804) and
rompA gene (GenBank accession no. DQ365801) of R. raoultii.
All three putative symbionts were detected from ticks at differ-
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FIG 2 Detection of vertical transmission of CLS-Ds (a), ALS-Ds (b), and
RLS-Ds (c) by diagnostic PCR amplification from D. silvarum at different
developmental stages. Lanes 1 to 7: M, DNA ladder; E, eggs; L, larvae; N,
nymphs; AF, adult females; AM, adult males; N, negative control.
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FIG 3 Detection of infection sites of CLS-Ds (a), ALS-Ds (b), and RLS-Ds (c)
by diagnostic PCR amplification from different tissues of D. silvarum. Lanes 1
to 6: M, DNA ladder; O, ovaries; G, salivary glands; Mg, midguts; Mt, Mal-
pighian tubules; N, negative control.

ent developmental stages, indicating that they can be transmitted
vertically (Fig. 2). The infection site analyses showed that CLS-Ds
infected ovaries and Malpighian tubes, while the others were
found in all tissues tested (Fig. 3). The prevalence analyses re-
vealed that CLS-Ds showed 100% infection in adults; for ALS-Ds,
42% (36/86) infection in females and 22% (10/46) infection in
males; and for RLS-Ds, 86% (74/86) infection in females and 91%
(42/46) infection in males. All field-collected D. silvarum samples
harbored one symbiont, and at least 40% of the females and 22%
of the males were infected by all three symbionts.

The results demonstrated that D. silvarum harbored diverse
assemblages of putative symbionts, including Coxiella-like symbi-
onts (CLS-Ds), Arsenophonus-like symbionts (ALS-Ds), and Rick-
ettsia-like symbionts (RLS-Ds). This is the first report proving that
various vertically transmitted symbionts coinhabit D. silvarum.
To date, only a few reports have concerned the coinfection of
multiple symbionts in ticks. For example, Noda et al. (27) and
Reinhardt et al. (29) reported that Ornithodoros moubata hosted
two kinds of symbionts, namely, Rickettsia-like and Francisella-
like symbionts. Besides, it has been previously reported that Am-
blyomma americanum simultaneously harbored Coxiella-like
symbionts, which are primary and are closely related to host re-
production (30, 31), and Rickettsia-like and Arsenophonus-like
symbionts (21). In this study, we found an important coinfection
phenomenon in D. silvarum, which provides a new model and
clue for elucidating the issues about the interaction and interrela-
tionship between symbionts and their hosts.

Interestingly, two of three putative categories of symbionts,
CLS-Ds and ALS-Ds, in D. silvarum are novel. They have highest
(95.6% and 96.7%) similarity with the phylogenetically most
closely related species of the genera Coxiella and Arsenophonus,
respectively. Phylogenetic analyses (Fig. 4 and 5) also revealed that
CLS-Ds and ALS-Ds formed clear and unique clusters in their
respective phylogenetic trees, and they were distinguished from
those of the other species and tick-associated microorganisms in
this genus.

To date, various Coxiella-like microorganisms have been de-
tected in both hard and soft ticks (21, 32, 33, 34, 35, 36, 37, 38).
Interestingly, Coxiella-like microorganisms exhibited diverse 16S
rRNA genotypes from different tick species. Phylogenetic analyses
(Fig. 4) revealed that Coxiella-like microorganisms from different
tick species formed different independent branches. Moreover,
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FIG 4 Phylogenetic tree of Coxiella-like symbionts (CLS-Ds) of D. silvarum and Coxiella-like microorganisms from other tick species based on 16S rRNA gene
sequence similarity. The tree was rooted with Bacillus subtilis (X60646) and constructed using the neighbor-joining method, and clustering nodes were also
recovered using the maximum-likelihood method. Numbers at nodes represent the levels of bootstrap support (percent) based on neighbor-joining analysis of
1,000 replicated data sets. GenBank accession numbers are given in parentheses. The bar represents 2% sequence divergence.
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FIG 5 Phylogenetic tree of Arsenophonus-like symbionts (ALS-Ds) of D. silvarum and Arsenophonus-like symbionts of D. variabilis based on 16S rRNA gene
sequence similarity. The tree was rooted with Bacillus subtilis (X60646) and constructed using the neighbor-joining method, and clustering nodes were also
recovered using the maximume-likelihood method. Numbers at nodes represent the levels of bootstrap support (percent) based on neighbor-joining analysis of
1,000 replicated data sets. GenBank accession numbers are given in parentheses. The bar represents 2% sequence divergence.

the Coxiella-like microorganisms in soft and hard ticks obviously
were grouped separately. Previous studies have suggested that the
Coxiella-like symbiont in A. americanum is a primary symbiont
because of its ubiquitous distribution (21, 30), vertical transmis-
sion (13, 21), infection of specific tissues (13), loss of fitness with
antibiotic treatment (31), and reduced genome (30). In this study,
we found that CLS-Ds exhibited vertical infection and infected
specific tissues. Thus, we hypothesize that CLS-Ds might be a pri-
mary symbiont and essential for the survival of its tick host. It may
be involved in regulation of host reproduction, because it inhabits
the ovary.

Besides CLS-Ds, another novel symbiont, ALS-Ds, which be-
longs to the genus Arsenophonus, was also detected. ALSs have
been found in D. variabilis (26), D. andersoni (17) and A. ameri-
canum (21). Arsenophonus is one of the four major inherited sym-
bionts of arthropods; about 5% of the species of arthropods have
been found to be infected by Arsenophonus (39). The type species,
A. nasoniae, can give rise to sex ratio bias of the wasp Nasonia
vitripennis (40). However, there is no evidence that the Arsenopho-
nus-like symbionts in ticks can lead to sex ratio bias. In this study,
we found that ALS-Ds exhibited wide tissue distribution and im-
perfect infection. Thus, it appears to be a facultative and unessen-
tial symbiont for D. silvarum.

The third vertical transmitted microorganism screened here
was R. raoultii, which has been detected in many Dermacentor
species (41, 42, 43, 44). The present study reported for the first
time the vertical transmission of R. raoultii in D. silvarum, suggest-
ing a closer relationship between R. raoultii and its tick host.

Nucleotide sequence accession numbers. The 16S rRNA gene
GenBank accession numbers for CLS-Ds are JN866594, JX432011,
JX432012, and JX432013; for ALS-Ds are JN866582, IN866587,
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JX432014, and JX432015; and for RLS-Ds are JN866588,
JX432016, JX432017, and JX432018.
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